首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   684篇
  免费   119篇
  2021年   5篇
  2019年   8篇
  2018年   5篇
  2016年   11篇
  2015年   17篇
  2014年   19篇
  2013年   21篇
  2012年   33篇
  2011年   22篇
  2010年   20篇
  2009年   22篇
  2008年   26篇
  2007年   25篇
  2006年   25篇
  2005年   28篇
  2004年   20篇
  2003年   25篇
  2002年   19篇
  2001年   26篇
  2000年   29篇
  1999年   23篇
  1998年   9篇
  1997年   12篇
  1996年   6篇
  1995年   16篇
  1994年   13篇
  1993年   5篇
  1992年   17篇
  1991年   20篇
  1990年   20篇
  1989年   11篇
  1988年   21篇
  1987年   15篇
  1986年   16篇
  1985年   19篇
  1984年   5篇
  1983年   10篇
  1982年   10篇
  1981年   7篇
  1980年   5篇
  1979年   8篇
  1977年   8篇
  1976年   9篇
  1975年   7篇
  1974年   11篇
  1973年   5篇
  1972年   12篇
  1971年   7篇
  1970年   6篇
  1968年   6篇
排序方式: 共有803条查询结果,搜索用时 15 毫秒
71.
Amyloid is associated with a number of diseases including Alzheimer's, Huntington's, Parkinson's, and the spongiform encephalopathies. Amyloid fibrils have been formed in vitro from both disease and nondisease related proteins, but the latter requires extremes of pH, heat, or the presence of a chaotropic agent. We show, using fluorescence spectroscopy, electron microscopy, and solid-state NMR spectroscopy, that the alpha-helical type I antifreeze protein from the winter flounder forms amyloid fibrils at pH 4 and 7 upon freezing and thawing. Our results demonstrate that the freezing of some proteins may accelerate the formation of amyloid fibrils.  相似文献   
72.
Cardiac troponin C (cTnC) is the Ca(2+)-dependent switch for contraction in heart muscle and a potential target for drugs in the therapy of heart failure. Ca(2+) binding to the regulatory domain of cTnC (cNTnC) induces little structural change but sets the stage for cTnI binding. A large "closed" to "open" conformational transition occurs in the regulatory domain upon binding cTnI(147-163) or bepridil. This raises the question of whether cTnI(147-163) and bepridil compete for cNTnC.Ca(2+). In this work, we used two-dimensional (1)H,(15)N-heteronuclear single quantum coherence (HSQC) NMR spectroscopy to examine the binding of bepridil to cNTnC.Ca(2+) in the absence and presence of cTnI(147-163) and of cTnI(147-163) to cNTnC.Ca(2+) in the absence and presence of bepridil. The results show that bepridil and cTnI(147-163) bind cNTnC.Ca(2+) simultaneously but with negative cooperativity. The affinity of cTnI(147-163) for cNTnC.Ca(2+) is reduced approximately 3.5-fold by bepridil and vice versa. Using multinuclear and multidimensional NMR spectroscopy, we have determined the structure of the cNTnC.Ca(2+).cTnI(147-163).bepridil ternary complex. The structure reveals a binding site for cTnI(147-163) primarily located on the A/B interhelical interface and a binding site for bepridil in the hydrophobic pocket of cNTnC.Ca(2+). In the structure, the N terminus of the peptide clashes with part of the bepridil molecule, which explains the negative cooperativity between cTnI(147-163) and bepridil for cNTnC.Ca(2+). This structure provides insights into the features that are important for the design of cTnC-specific cardiotonic drugs, which may be used to modulate the Ca(2+) sensitivity of the myofilaments in heart muscle contraction.  相似文献   
73.
Defining the molecular mechanisms that coordinately regulate proliferation and differentiation is a central issue in development. Here, we describe a mechanism in which induction of the Ets repressor METS/PE1 links terminal differentiation to cell cycle arrest. Using macrophages as a model, we provide evidence that METS/PE1 blocks Ras-dependent proliferation without inhibiting Ras-dependent expression of cell type-specific genes by selectively replacing Ets activators on the promoters of cell cycle control genes. Antiproliferative effects of METS require its interaction with DP103, a DEAD box-containing protein that assembles a novel corepressor complex. Functional interactions between the METS/DP103 complex and E2F/ pRB family proteins are also necessary for inhibition of cellular proliferation, suggesting a combinatorial code that directs permanent cell cycle exit during terminal differentiation.  相似文献   
74.
Apolipoprotein E (apoE) is important in lipid metabolism due to its interaction with members of the low density lipoprotein (LDL) receptor family. ApoE is able to interact with the LDL receptor only when it is bound to lipid particles. To address structural aspects of this phenomenon, a receptor-active apoE peptide, encompassing the receptor-binding region of the protein, was studied by NMR in the presence of the lipid-mimicking agent trifluoroethanol. In 50% trifluoroethanol, apoE-(126-183) forms a continuous amphipathic alpha-helix over residues Thr(130)-Glu(179). Detailed NMR relaxation analysis indicates a high degree of plasticity for the residues surrounding 149-159. This intrinsic flexibility imposes a curvature to the peptide that may be important in terms of interaction of apoE with various sized lipid particles and the LDL receptor. Residues 165-179 of apoE may act as a molecular switch whereby these residues are unstructured in the absence of lipids and prevent interaction with the LDL receptor. In the presence of lipids, these residues become helical resulting in a receptor-active conformation of the protein. Furthermore, the electrostatic characteristics and geometric features of apoE-(126-183) suggest that apoE binds to the LDL receptor by interacting with more than one of the receptor ligand-binding repeats.  相似文献   
75.
Lindhout DA  Li MX  Schieve D  Sykes BD 《Biochemistry》2002,41(23):7267-7274
Cardiac troponin I (cTnI) is the inhibitory component of the troponin complex, and its interaction with cardiac troponin C (cTnC) plays a critical role in transmitting the Ca(2+) signal to the other myofilament proteins in heart muscle contraction. The switch between contraction and relaxation involves a movement of the inhibitory region of cTnI (cIp) from cTnC to actin-tropomyosin. This region of cTnI is prone to missense mutations in heart disease, and a specific mutation, R145G, has been associated with familial hypertrophic cardiomyopathy. It also contains the unique cardiac PKC phosphorylation site at residue T142. To determine the structural consequences of the mutation R145G and the T142 phosphorylation on the interaction of cIp with cTnC, we have utilized 2D [(1)H, (15)N]-HSQC NMR spectroscopy to monitor the binding of native cIp, cIp-R (R145G), and cIp-P (phosphorylated T142), respectively, to the Ca(2+)-saturated C-domain of cTnC (cCTnC.2Ca(2+)). We also report a strategy for cloning, expression, and purification of cTnI peptide, and both synthetic and recombinant peptides are used in this study. NMR chemical shift mapping indicates that the binding epitope of cIp on cCTnC.2Ca(2+) is not greatly affected, but the affinity is reduced by approximately 14-fold by the T142 phosphorylation and approximately 4-fold by the mutation R145G, respectively. This suggests that these modifications of cIp have an adverse effect on the binding of cIp to cCTnC.2Ca(2+). These perturbations may correlate with the impairment or loss of cTnI function in heart muscle contraction.  相似文献   
76.
The structure of IP-10 was solved by NMR spectroscopy and represents the first structure from the class of agonists toward the receptor CXCR3. CXCR3 binding chemokines are unique in their ability to bind receptors from both the CC and CXC classes of chemokine receptors. An unusual structural feature of IP-10 was identified that may provide the basis for the ability of IP-10 to bind both CXCR3 and CCR3. The surface of IP-10 that interacts with the N-terminus of CXCR3 was defined by monitoring changes in the NMR spectrum of IP-10 upon addition of a CXCR3 N-terminal peptide. These studies indicated that the interaction involves a hydrophobic cleft, formed by the N-loop and 40s-loop region of IP-10, similar to the interaction surface observed for other chemokines such as IL-8. An additional region of interaction was observed that consists of a hydrophobic cleft formed by the N-terminus of IP-10 and 30s-loop of IP-10.  相似文献   
77.
78.
79.
A heteronuclear NMR study of human transforming growth factor alpha (TGFalpha) in complex with the epidermal growth factor receptor extracellular domain (EGFR-ED) provided an effective method for delineating the relative contributions of the residues of the ligand to its affinity for the receptor. In conjunction with previously obtained mutagenesis data, these results indicate that while a large number of residues are involved in complex formation and make up the binding interface, a small subset contribute most of the binding energy. They also show that while the residues which contribute to receptor binding are localized on one face of the molecule, the specific residues that play the major role in the affinity of TGFalpha in the complex are in two distinct regions of TGFalpha. This suggests that two small functional epitopes each composed of two residues exist within a larger structural epitope presented on the binding face. These results give the most detailed picture to date of the receptor binding determinants and yield further insight into the formation of the ligand-receptor complex.  相似文献   
80.
9-cis-retinoids: biosynthesis of 9-cis-retinoic acid   总被引:5,自引:0,他引:5  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号